

RMS Testimony

NAIC Fall 2007 National Meeting Property & Casualty Insurance Committee Catastrophe Modeling Public Hearing

September 28, 2007

Bringing Science to the Art of Underwriting™

What are catastrophe models?

- Models are a complex series of equations and algorithms assembled to produce output that quantifies the risk from high severity low frequency natural and man made disasters
- Construction of a catastrophe model is based on input from multiple disciplines such as:
 - Meteorology, engineering, actuarial, computer science geophysical, seismology, statistical
- Models are designed to estimate losses and quantify uncertainty from a given peril over a specified future time period
- Models are based on scientific principles, historical information, and engineering judgment
- Models are developed independently
 - Customers have no input in results generated by the model
 - Models are used by all parties involved in the risk transfer process
 - Goal is to produce unbiased results

Invitation extended to RMS

"The committee is interested in hearing your (RMS) perspective regarding whether you should be considered and regulated as an advisory organization and your views on short-term hurricane modeling."

Should modelers be considered and regulated as advisory organizations?

- If regulation of modeling companies is appropriate, ramifications on model independence should be considered
- Modelers use and need to continue using all science available to provide the most accurate quantification of risk even if the results are unpopular
- Burden to regulating entities to become experts on very complex models (several perils and regions)
- What is the outcome and consequences of regulation? model certification for use in all states?

Additional considerations for regulation

- Determination of an appropriate time frame for model projections
- Consideration of what models are being used for
 - Solvency (adequate)
 - Rate filings (not excessive)
 - Underwriting
 - Consideration of how models are being used
 - Data standards
 - Model settings
 - Types of analyses
- Audit the outcome of the process (do the models produce the intended result)
- Publish results (providing transparency to the public)
 - Such as average annual losses by county

What are we trying to achieve?

- Models estimate future insured losses from catastrophes which assist insurance companies evaluate solvency, develop appropriate rates, and underwriting
- The estimate needs to be forward-looking from today as insurance coverage is for the future, and claims will occur in the future
- What is the appropriate timeframe for models
 - Insurance policies generally cover an annual period
 - However, estimating from season to season is difficult and subject to large variability
 - Need to balance stability with responsiveness

Problems with using the long-term mean for hurricane modeling

- Clearly under-estimated basin activity every year after 1994, except during El Niño (1997, 2002, 2006)
- Responds very slowly to sustained changes in hurricane activity
- Does not respond adequately to changes in activity due to natural cycles eg AMO (periods of higher and lower activity of up to 40 years)
- Does not respond adequately to changes in activity due to climate change (increasing activity due to rising SSTs)
- Incomplete record before 1950, so the mean since 1900 may underestimate early activity

Atlantic basin hurricane activity has shown a marked increase

- Since 1970 proportion of Cat 3-5 storms has increased
 - 1995-2006 = 1.6x the
 1900 1995 avg.
- Since 1995 # of storms in Atlantic has increased
- Illustrates the deficiency in using the long term historical average

Category 3-5 Atlantic basin hurricanes 1901-2006 and 5-year running average

What are the alternatives?

- Difficult to precisely quantify impacts of natural cycles or climate change on frequency, intensity and geographical distribution of hurricane landfalls
- Can carry out numerous different statistical analyses of the historical data and make extrapolations based on different assumptions
- But many different analyses are plausible and it is a matter of judgment which analyses should be used to estimate future activity
- Choosing to use the long-term mean or any other statistical analyses as the basis for extrapolating future activity, in the face of so many uncertainties, is a matter of subjective judgment

Modeling under "deep" uncertainty

- RMS believes judgments made under deep uncertainty are best made by independent experts
- There is greater confidence in relying on the combined judgment of many experts rather than on just one
- Expert elicitation is a rigorous methodology for making use of expert judgment
- It has an established track record in many different areas of risk assessment, including earthquake, volcano and nuclear energy
- It is still in early stages of adoption in meteorological science, but likely to become mainstream
 - International assessments of climate change rely on expert judgment because of the uncertainties

RMS summary on use of near term activity rates

- In the Atlantic there has been an increase in hurricane intensity since 1970, and an increase in hurricane frequency since 1995
- Strong consensus among experts that increased Atlantic activity will be prolonged (i.e. at least 10 years)
- The simple long-term historical average is no longer appropriate for characterizing current U.S. landfall activity rates
- Breaking free from a model of time-constant climatology also means we need to define explicitly the time horizon for model output
- A five-year period into the future is appropriate, justified by both the current state of scientific knowledge and by the needs of users of model output

2007 submission to the FCHLPM Based on uniform exposure data by ZIP code (form S2)

